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Introduction

ADHD is among the most common childhood neurodevel-
opmental disorders with global prevalence estimates around 
7.2% (~129 million people; Thomas, Sanders, Doust, 
Beller, & Glasziou, 2015). Longitudinal studies document a 
high level of persistence of ADHD symptomatology into 
adulthood (>70%) with severe difficulties reported in 
occupational, health, and academic domains (Barkley, 
Fischer, Smallish, & Fletcher, 2002; Uchida, Spencer, 
Faraone, & Biederman, 2018).

The treatment of ADHD has been challenging. Common 
treatments for ADHD, such as medication and/or (parent) 
management treatment, have not been shown to be highly 
effective in the long run (Jensen et al., 2007; Molina et al., 
2009); nor do they appear to directly target the executive 
functions that frequently co-occur with ADHD (Biederman 
et al., 2004; Rapport, Orban, Kofler, & Friedman, 2013; 
Weyandt, Oster, Gudmundsdottir, DuPaul, & Anastopoulos, 
2017). This has, in part, contributed to a search for alterna-
tive or complementary treatments. One new candidate treat-
ment program, making use of recent advances in information 
technology, is intensive computerized executive function 
training. These treatment programs are fully online, home 

based, relatively cost-effective, and flexible in adapting to 
individual differences in difficulty level. The training exer-
cises, often marketed as “brain training,” are presented as 
games and are designed to strengthen specific executive 
function deficits linked to ADHD, such as working memory 
(Klingberg, 2010).

Neural measures have more recently been explored as 
outcome measures in the context of treatment studies as 
they may provide unique perspectives on disorders given 
that they are theorized to capture the underlying neurobio-
logical mechanisms mediating deficits (Lenzenweger, 
2013; Woltering & Shi, 2016). The value of neural 
measures is also that they, when used in tandem with other 
measures, can provide incremental validity of the outcome 
measurement. The goal of this study was to assess the 
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efficacy of computerized working memory training 
(CWMT) and test whether the underlying neural circuits 
mediating working memory would change in adults with 
ADHD. We note that the dataset reported in this article 
presents data on working memory from a larger-scale ran-
domized controlled trial (RCT). Previously reported behav-
ioral and other neural data have been reported elsewhere 
(Liu, Glizer, Tannock, & Woltering, 2016; Liu, Lishak, 
Tannock, & Woltering, 2017; Mawjee et al., 2017; Mawjee, 
Woltering, & Tannock, 2015). Here we present new treat-
ment-related data on behavioral and neural measures 
derived from samples who completed a visuospatial change 
detection task yielding measures of working memory filter-
ing efficiency and working memory capacity (please see 
Supplemental Material—Section 1 for more information on 
sample composition).

The rationale for our larger-scale RCT study was moti-
vated by three main reasons at the time that our research 
program was conceptualized in 2010. The first is theoretical 
models suggesting that executive functions, in particular 
working memory, are central in ADHD. One of the most 
influential and comprehensive theoretical models on ADHD 
proposes that working memory is one of four core executive 
functions underlying the deficit (Barkley, 1997). Indeed, 
meta-analytical studies have shown that working memory is 
impaired in people with ADHD compared with their peers 
(Kasper, Alderson, & Hudec, 2012; Martinussen, Hayden, 
Hogg-Johnson, & Tannock, 2005). The second is claims 
that the capacity of WM is not fixed but can be changed 
with intensive training (Jaeggi, Buschkuehl, Jonides, & 
Perrig, 2008; Klingberg, Forssberg, & Westerberg, 2002). 
This notion was supported by one particular influential 
study in which reductions in ADHD symptomatology were 
reported in an RCT using CWMT (Klingberg et al., 2005). 
The third is initial assertions that this training demonstrated 
changes in the density of dopamine D1 receptors in prefron-
tal and parietal brain regions linked to working memory 
functioning in healthy participants (McNab et al., 2009).

The RCT used the CogMed CWMT program (CogMed; 
Cognitive Medical Systems AB, Stockholm, Sweden) 
which has been the most widely used and available CWMT 
(Klingberg, 2010). To assess treatment effects, we utilized a 
randomized controlled design with three arms: a standard-
length arm (CogMed Working Memory Training [CMWT]: 
45 min/session daily for 5 weeks); a shortened-length arm 
(CMWT: 15 min/session for 5 weeks) that controlled for 
motivation, engagement, and expectancy of change; and a 
no-training waitlist group. We note that the complete behav-
ioral results for this sample have been reported elsewhere 
(Mawjee et al., 2017; Mawjee et al., 2015) and that the nov-
elty of this study is mostly driven by the neural findings and 
their relationship with the behavioral data. We recruited col-
lege students with ADHD as they have been a growing but 

relatively understudied population. As students, they face 
an increased demand for self-regulation, time management, 
and organization to succeed in what is a particularly forma-
tional period of their lives (DuPaul, Pinho, Pollack, 
Gormley, & Laracy, 2017; Gray, Fettes, Woltering, Mawjee, 
& Tannock, 2016).

To assess working memory, we used a visuospatial 
change detection task with distractors while participants 
were hooked up to an electroencephalography (EEG) unit 
(Vogel, McCollough, & Machizawa, 2005). In short, this 
paradigm asked participants to remember the colors of 
squares within an array under three conditions: a low-load 
(LL) condition (two squares), a high-load (HL) condition 
(four squares), and a distractor-load (DL) condition (two 
squares + two circles; circles were distractors and had to 
be ignored), for a brief period of time. A waveform over 
posterior electrode sites called the contralateral delay activ-
ity (CDA) has an amplitude modulated by the numbers of 
objects (e.g., load condition) being held in memory (for 
more details, see Vogel & Machizawa, 2004; Vogel et al., 
2005). The sensitivity of the CDA waveform to load manip-
ulations can also be used to determine whether irrelevant 
items unnecessarily consume memory, that is, an index of 
filtering efficiency of the brain. For example, if the CDA of 
the distractor condition (two squares + two circles) resem-
bles the LL condition (two squares), it can be concluded 
that participants’ brains effectively filtered out the irrele-
vant circles and excluded them from storage. However, if 
the CDA for the distractor condition resembles that of the 
HL condition (four squares), participants may have failed to 
efficiently filter out the distractors. A recent meta-analysis 
supported the relationship between CDA amplitude change 
with load (CDA-Δ) and filtering efficiency with the visuo-
spatial working memory capacity (Luria, Balaban, Awh, & 
Vogel, 2016).

Our alternative hypothesis, based on the initial clinical 
trials preregistration (#NCT01657721), was as follows: We 
expected behavioral improvements and concomitant neural 
changes indicative of improved working memory. Stronger 
effects were expected for standard-length compared with 
shortened-length training compared with the waitlist group, 
respectively. Specific hypotheses for neural outcomes at the 
level of CDA activity were not preregistered and were 
therefore predictions based on comparative data from this 
ADHD sample and a matched peer group without ADHD 
(Gu, Liu, Tannock, & Woltering, 2018). These findings sug-
gested that individuals with ADHD showed no difference in 
CDA amplitude with the load manipulation compared with 
a typically developing comparison group. We therefore 
expected an increase in CDA-Δ, that is, a normalization, to 
be associated with an improvement in the treatment groups. 
We had no prediction with regard to the neural filtering 
efficiency.
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Materials and Methods

Participants

Participants with ADHD were recruited through listserv 
emails sent from student disability services. Semistructured 
telephone interviews were conducted to assess the partici-
pants’ eligibility and validate their current ADHD symp-
tomatology (for details, see Gray et al., 2016; Gray, 
Woltering, Mawjee, & Tannock, 2014). Inclusion criteria 
were (a) registered with Student Accessibility/Disability 
Services with a confirmed diagnosis of ADHD; (b) current 
symptoms consistent with diagnostic criteria for ADHD as 
indicated by telephone interview and meeting the criterion 
scores on the six-item Adult ADHD Self-Report Scale–Part 
A (ASRS-A); (c) current enrollment in post-secondary edu-
cation institutions; and (d) age between 18 and 35 years. 
Exclusion criteria included (a) major neurological dysfunc-
tion or psychosis; (b) current use of sedating or mood-alter-
ing medication other than stimulant medication provided 

for ADHD; (c) uncorrected sensory, motor, or perceptual 
handicap that would prevent use of a computer program; 
and (d) a history of concussion or traumatic brain injury 
prior to ADHD diagnosis. More information on the compo-
sition of the sample, and its relationship to previously pub-
lished studies from this project, is provided in Supplemental 
Material—Section 1.

In accordance with CONSORT (Consolidated Standards 
of Reporting Trials) guidelines for reporting RCTs, Figure 1 
shows the flow of participants through the study and the 
randomization into three arms. Participants who were 
excluded from the study were not different from those who 
completed the training on all demographic, questionnaire, 
and standardized performance measures before treatment as 
verified by chi-square and independent t tests. The propor-
tion of participants who did not complete the training was 
similar across the three training groups.

Table 1 describes the basic demographics and participant 
characteristics for the final sample and broken down per 

Figure 1. CONSORT flowchart.
Note. Unusable data include machine malfunction and too many artifacts causing less than 10 artifact-free as well as participants not being engaged 
with the task (e.g., false alarm rates: 100%). Incomplete neural assessment means that participants did not complete the post-training EEG assessment. 
CONSORT = Consolidated Standards of Reporting Trials; EEG = electroencephalography.
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three arms: standard-length (n = 29), shortened-length (n = 
32), and waitlist (n = 28) groups. No statistically signifi-
cant differences were found on any of these variables when 
arms were compared. Participants were not required to 
make changes to their medication treatment for the duration 
of the study (the lab visits and treatment period). Participants 
were asked to circle M or F with the prompt “gender,” so we 
cannot disambiguate biological sex from gender identity. 
No information was collected on race/ethnicity because 
such information was not ascertained in Canada at the time 
of the study and, to date, there is no national policy on gath-
ering such data in Canadian-based research (Coteau, 2018; 
Niemi, Wortley, Yau, & Pruegger, 2015). We acknowledge 
that this limits the full characterization of our sample.

Procedure

This study was preregistered at ClinicalTrials.gov (registra-
tion #NCT01657721) and approved by the Institutional 
Ethics Boards of the University of Toronto where this study 
was conducted (protocol reference: #23977). Prior to enter-
ing the study, informed written consent was obtained from 
all participants. During the first, pre-training, testing, all 
participants came to our laboratory to complete a behav-
ioral assessment and several computerized tasks with EEG. 
The behavioral assessment was conducted first and included 
a battery of neuropsychological tests and behavioral rating 

scales which lasted up to 3 h (see Mawjee et al., 2017; 
Mawjee et al., 2015, for details). After a break, the EEG 
assessments began. EEG tasks included, respectively, a 
resting state task (Woltering, Jung, Liu, & Tannock, 2012), 
the change detection tasks (Gu et al., 2018, and see described 
in present paper), a delayed match-to-sample working 
memory task (Kim, Liu, Glizer, Tannock, & Woltering, 
2014; Liu et al., 2016), and a Go-Nogo task (Liu et al., 
2017; Woltering, Liu, Rokeach, & Tannock, 2013). 
Participants were compensated $20 at their first visit (pre-
training) session and $150 at their second (post-training) 
session. After the first lab visit, participants were randomly 
assigned to three groups: a standard-length training group, a 
shortened-length training group, and a traditional waitlist 
group. The two training groups then went through 5 weeks 
of working memory training with different training inten-
sity (described in more detail in the next section). The wait-
list group did not do any training. At 3 weeks after the end 
of the training program, all participants came back to the 
laboratory to complete behavioral and EEG assessments 
identical to the ones in the pre-training assessment.

Working Memory Training Program

The CWMT program (CogMed) was provided by a licensed 
and independent community psychology service agency. 
The standard version of CWMT consists of 12 auditory–
verbal and visual–spatial working memory tasks. The diffi-
culty level is automatically adjusted to each individual by 
an adaptive algorithm to ensure that participants are always 
maximally challenged. The program requires 25 training 
sessions to be completed in 5 days per week for a period of 
5 to 6 weeks. To ensure compliance and address training 
challenges with the program, a certified CWMT coach 
completed weekly calls by telephone to monitor and discuss 
training progress. The research/assessment team and the 
intervention team were operating independently of one 
another throughout the study.

Participants in the standard-length group engaged in 45 
min of training per day. Those in the shortened-length group 
engaged in an identical program, however, only trained for 
15 min per day. Participants in the waitlist group did not 
undergo any training. To control for possible effects of indi-
vidual attention from a coach on participants’ motivation, 
the coach calls were also made to participants in the waitlist 
control group. During these calls, the waitlist participants 
were provided with information and resources about work-
ing memory and were given the opportunity to discuss their 
progress at post-secondary education. More details on the 
training tasks, research design, and the entire battery of 
behavioral measures used during this project can be found 
in our previous report that primarily focused on the behav-
ioral aspect of working memory training effects (Mawjee 
et al., 2017; Mawjee et al., 2015). Furthermore, Liu et al. 

Table 1. Questionnaire and Demographic Information.

Standard 
length

Shortened 
length

Waitlist 
control

 n = 29 n = 32 n = 28

 M SD M SD M SD

Males/females (n) 16/13 18/14 15/13  
Taking medication (n) 19 16 14  
Age (years) 24.3 3.4 23.5 3.5 23.5 3.4
WASI-IQa 116.1 10.9 109.8 13.0 115.2 13.2
SA-45 (Global)a 60.0 7.4 62.0 8.2 59.1 8.1
 Anxiety 59.9 8.3 62.1 8.2 60.3 8.7
 Depression 59.8 5.4 59.7 7.4 57.8 7.1
 Obsessive–compulsive 69.1 7.9 71.7 8.5 67.0 7.3
 Somatization 54.6 6.8 55.6 9.5 53.8 8.5
 Phobia 62.7 5.8 63.3 5.7 61.4 4.7
 Paranoia 55.1 8.0 56.2 8.5 56.6 7.9
 Psychoticism 60.1 4.2 61.1 5.0 61.2 5.3
Post-secondary 

education (years)
2.4 1.5 2.6 1.3 2.1 1.3

GPA 2.9 0.7 2.9 0.7 3.1 0.7

Note. GPA values are self-reported. WASI-IQ = Wechsler Abbreviated 
Scale of Intelligence–Intelligence Quotient; SA-45 = Symptom Assess-
ment-45; GPA = Grade Point Average.
aStandardized scores.
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(2017) provide detailed data on compliance within this 
sample as monitored by the community psychology service 
agency confirming that the standard-length group indeed 
spent the allotted average daily active training time (about 
45 min) compared with the shortened-length group (about 
15 min). Our training dose manipulation was also verified 
by data showing participants in the standard-length group 
outperforming the shortened-length group on the CWMT 
tasks (see Figure 2 for illustration, from Liu et al., 2017, 
Supplemental Material).

Measures

Questionnaires and neuropsychological tasks. The numbers of 
standardized, and well-validated, questionnaires and tasks 
were assessed before and after the CWMT to capture vari-
ous levels of transfer (Mawjee et al., 2015). As criterion 
measures, that is, similar to those trained at CWMT, we 
assessed the Digit Span Forward and Backward subtests 
from the Wechsler Adult Intelligence Scale–Fourth Edition 

(WAIS-IV; Wechsler, 2008). As a near-transfer measure, 
that is, a working memory measure but dissimilar to those 
trained, we utilized the pattern recognition subscale of the 
Cambridge Neuropsychological Testing Automated Battery 
(CANTAB; Fray, Robbins, & Sahakian, 1996). Finally, as 
our far-transfer measure, participants completed the Adult 
ADHD Self-Report Scale (ASRS v1.1; Adler et al., 2012). 
The Symptom Assessment-45 (SA-45; Maruish, 2004) and 
the Wechsler Abbreviated Scale of Intelligence–Second 
Edition (WASI-II; Wechsler, 1999) were assessed at the 
previsit only to assess additional psychopathology and an 
estimate of general intelligence.

Neural change detection task. Our visual WM task was 
adapted from Vogel et al. (2005). E-prime 1.2 software 
(Psychology Software Tools Inc., Pittsburgh, PA) was used 
to control stimulus presentation and timing as well as to col-
lect performance measures. In short, participants were 
shown either a memory array composed of either four col-
ored squares (HL condition; 72 trials), two squares (LL con-
dition; 72 trials), or two squares and two circles (DL 
condition; 72 trials) per hemifield while they kept their eyes 
fixated in the middle of the screen. Participants had to mem-
orize the colors of the squares and, after a delay, they were 
asked to indicate whether one of the squares changed color 
on a test array (this was the case in 50% of the trials, regard-
less of the load condition). Our paradigm is explained in 
more detail in Supplemental Material—Section 2.

Participants’ WM capacity (referred to as “K”) was cal-
culated from their behavioral performance. Similar to Vogel 
et al. (2005), we used the following formula to calculate K: 
K = N × (H – F), where K is the visual WM capacity, N is 
the number of items in the memory array, H is the hit rate, 
and F is the false alarm rate. By subtracting F from H, we 
can correct for guessing and obtain a more accurate capac-
ity value. This value was calculated for the K[HL], K[LL], 
and K[DL] conditions.

Data Processing and Analysis Plan

EEG data acquisition and preprocessing from the change detec-
tion task. EEG was recorded with a 128-channel HydroCel 
Geodesic Sensor Net at a 500 Hz sampling rate, using EGI 
Net Station standalone software (Electrical Geodesic Inc., 
Eugene, OR, USA). Data processing was performed simi-
larly to the literature reported on the CDA (e.g., Vogel & 
Machizawa, 2004; Vogel et al., 2005). In short, after filter-
ing (0.05-30 Hz) and segmenting (400 ms before onset 
memory array and 1,000 ms after), data were transferred to 
MATLAB 9.1 (The MathWorks, Inc., Natick, MA) and 
artifacted using independent component analyses (ICAs; 
Delorme & Makeig, 2004). Calculation of the CDA wave 
followed standard procedures (see Supplemental Mate-
rial—Section 3). Electrode sites (lateral posterior) and time 

Figure 2. Daily WM improvements for the standard-length 
(n = 24) and shortened-length (n = 21) training groups on an 
example visual–spatial WM training task.
Note. The value of the performance represents the mean working 
memory span across all trails during a specific training day (session). 
Embedded bar graphs show that averaged daily active training time was 
significantly longer for the standard-length than the shortened-length 
group. Error bars represent standard errors of the mean. “*” indi-
cates the days when the performance was significantly better for the 
standard-length than the shortened-length group (p = .0001-.037). Mean 
performance across all training days was also higher for the standard-
length than the shortened-length group, t(43) = 3.23, p = .0024. WM = 
working memory.
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windows (550-700 ms) for the CDA were chosen a priori 
based on Gu et al. (2018), where CDA differences with a 
normal healthy comparison group were found to be maxi-
mal. Considering space limitations, we will report more 
details regarding the artifacting, trial counts, and the com-
putation of the CDA waveforms, in Supplemental Mate-
rial—Section 3.

CDA-Δ and filtering efficiency were the two measures 
derived from the CDA waves. CDA-Δ was calculated as the 
difference between the CDA for the LL and HL conditions 
(see McCollough, Machizawa, & Vogel, 2007; Vogel et al., 
2005). To calculate the filtering efficiency and quantify how 
efficiently participants can inhibit distractors from entering 
their limited WM storage, we measured how individuals’ 
CDA amplitudes in the distractors-present condition resem-
bled those in the LL (i.e., two items) condition rather than in 
the HL (i.e., four items) condition. It was assumed that the 
closer the distractor CDA amplitudes are to those in the LL 
condition, the higher the filtering efficiency is. Consistent 
with the previous studies (Vogel et al., 2005), the following 
formula was used to calculate this filtering efficiency, A = 
(H – D)/(H – L), where A is the filtering efficiency and H, L, 
and D are the CDA amplitudes in the HL, LL, and DL con-
ditions, respectively.

Analysis plan. Our analysis plan was determined a priori. We 
choose to employ mixed-model repeated-measures analy-
ses of variance (ANOVAs) with Group (three levels: stan-
dard length, shortened length, and waitlist) and Time (two 
levels: pre- and post-treatment) as the between- and within-
participant factors, respectively. This analysis was most 
appropriate as it allowed us to test for the main effects of 
Group (Condition) and various levels of Time as well as 
their interactions to determine the treatment effects. Viola-
tions of statistical test assumptions (e.g., normality) will be 
reported. Partial eta-squared (η2) values were computed to 
ascertain the effect size. According to Vacha-Haase and 
Thompson (2004), partial η2 = .01 corresponds to a small 
effect, partial η2 = .10 corresponds to a medium effect, and 
partial η2 = .25 represents a large effect. To remove the 
disproportional effect of potential outliers, data were win-
sorized to 2.5 standard deviations (see Wilcox, 2011). This 
was necessary for less than 5% of our variables. We set our 
significance level at a p value of .05 for all analyses.

Results

Treatment Effects of Questionnaire and 
Behavioral Data

Performance data during the task, as measured by capacity 
K, showed a main effect of Time, F(1, 86) = 6.61, p = .012, 
η2 = .07, and Condition, F(2, 85) = 244.7, p < .000, η2 = 
.85, with performance improving from pre- to post-treatment 

and performance in the high load, logically, having higher 
capacity K values than the LL or DL condition (p < .001). 
Values for the low load were higher than the distractor load 
(p < .001). None of the interaction terms were statistically 
significant suggesting that the treatment had no effect on the 
behavioral outcome. The Time by Group interaction term 
was F(1, 86) = 1.70, p = .19.

Concerning the questionnaire and neuropsychological 
tests (please also see Mawjee et al., 2017; Mawjee et al., 
2015, for more details on behavioral outcome measures), 
the criterion measures showed a similar pattern with statis-
tically significant Time by Group interactions for the Digit 
Span Forward, F(2, 85) = 5.86, p = .004, η2 = .12, and 
Backward, F(2, 85) = 6.54, p = .002, η2 = .13, tests. Post 
hoc analyses showed a pattern whereby the standard- and 
shortened-length training groups improved equally from 
pre- to post-treatment (p’s < .001), but the waitlist group 
showed no improvement. Our near- and far-transfer mea-
sures only showed a main effect of Time, with F(1, 85) = 
5.92, p = .017, η2 = .07, for the CANTAB pattern recogni-
tion, and F(1, 85) = 13.53, p < .001, η2 = .14, for the 
ASRS, showing better outcomes for both measures from 
pre- to post-training regardless of the training group. None 
of the interaction terms were statistically significant sug-
gesting that the treatment had no effect on near- and far-
transfer measures of working memory. Table 2 shows the 
means and standard deviations of behavioral and neural 
data for Group and Time Point.

Treatment Effects on EEG Data

The CDA-Δ and neural filtering efficiency measures did not 
show any main effects or interaction effects with F(1, 86) = 
0.97, p = .33, for CDA-Δ, and F(1, 86) = 2.13, p = .15. 
Figure 3 shows the CDA waves for each treatment arm and 
time point broken down per load condition. For simplifica-
tion, Figure 4 shows the data points of CDA-Δ for each of 
the treatment arms per time point. Table 2 shows the means 
and standard deviations of all the aforementioned variables 
broken down by Group and Time. Corrected for multiple 
comparisons (criterion set to p lower than .01), the rate of 
change from pre- to post-treatment in CDA values also did 
not relate to the rate of change for any of the behavioral 
variables within each treatment group as measured by cor-
relations. The same pattern of results was found when anal-
yses were rerun, stratifying for sex and medication use.

Discussion

Our results can be aptly summarized by the statement that 
neural indices of working memory capacity did not show 
evidence of change as a result of training. These findings, in 
combination with behavioral findings, show that the CWMT 
groups did not differ in rate of change compared with a 
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waitlist group, suggesting that CWMT is not an effective 
treatment for college students with ADHD.

At a behavioral level, our findings showed that criterion 
measures, that is, those measures similar to tasks that were 
incorporated into the training program, were showing an 
improvement with training. Effects were of similar magni-
tude for the standard-length (45-min) and shortened-length 
(10-min) training groups, suggesting no additional benefit 
from the traditional 45-min training session. Furthermore, 
these findings also validated that participants adhered to the 
training and that learning occurred. No effects were found, 
however, for this specific sample, with the near- or far-
transfer tasks, suggesting that CWMT only confers benefits 
for those tasks that were trained.

Could CWMT have changed underlying neural circuitry 
of working memory to be more efficient despite a measur-
able change at a behavioral level? More specifically, is it 
possible that effects at neural level are subtle but that they 
do not show up in behavioral measurements or that they 
capture processes of working memory, such as filtering effi-
ciency, to which most of our traditional behavioral outcome 
measures are insensitive? Our study did not find support for 
these notions as our neural findings supported the behav-
ioral ones. The CDA waveforms, which were a reliable 
index of working memory processing at a neural level 
(Luria et al., 2016), did not show change after treatment for 
either of the treatment groups compared with the waitlist 
group.

Our findings are in line with a more recent body of litera-
ture studying the effects of CWMT in college students with 
ADHD (Liu et al., 2016; Liu et al., 2017; Mawjee et al., 
2017; Mawjee et al., 2015) as well as the more general child 

and adult ADHD population (for recent meta-analytical 
reports, see Cortese et al., 2015; Melby-Lervåg and Hulme, 
2013; Rapport et al., 2013). These studies have generally 
concluded that CWMT does not appear to increase the 
working memory capacity nor reliably transfer to untrained 
tasks of working memory. However, these conclusions are 
not without controversy. A recent review by Constantinidis 
and Klingberg (2016) claimed that CWMT does improve on 
untrained working memory tasks and they proposed a 
model of neural plasticity based on, in part, increased activ-
ity in frontoparietal networks. Our findings contradict these 
statements and also provided an indirect test of their pro-
posed neural model as the CDA waveform is mediated by 
the same neural network (Eriksson, Vogel, Lansner, 
Bergström, & Nyberg, 2015; Luria et al., 2016).

Our findings have implications at a theoretical and a 
practical level. Theoretically, this study contributes to a 
growing body of literature discussing the issue of transfer in 
cognitive treatment (Jaeggi, Buschkuehl, Shah, & Jonides, 
2014; Shipstead, Redick, & Engle, 2012; Simons et al., 
2016; Stojanoski, Lyons, Pearce, & Owen, 2018) and helps 
document situations when transfer will and/or will not be 
likely to occur. In the case of this study, criterion measure, 
near identical to those trained, did show any improvement, 
however, and were not affected by the duration of the WM 
training. Our findings contribute to the neural plasticity lit-
erature in suggesting that the activity in frontoparietal net-
works hypothesized to mediate working memory, and as 
measured using the CDA, seemed unaffected by CWMT. In 
this instance, the absence of training effects in performance 
data of the EEG task (e.g., our capacity K measure) matched 
the neural data. This is not a trivial point, as one could 

Table 2. Means and Standard Deviations for Behavioral and Neural Values Broken Down per Group and Time Point.

Measure

Standard-length group  
(n = 29)

Shortened-length group  
(n = 31)

Waitlist group  
(n = 28)

Pre-training Post-training Pre-training Post-training Pre-training Post-training

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Capacity K
 Low load 1.76 (0.27) 1.76 (0.22) 1.73 (0.20) 1.83 (0.12) 1.75 (0.22) 1.76 (0.21)
 High load 2.52 (0.76) 2.66 (0.54) 2.55 (0.68) 2.75 (0.52) 2.55 (0.48) 2.54 (0.64)
 Distract load 1.60 (0.27) 1.70 (0.22) 1.58 (0.26) 1.74 (0.19) 1.63 (0.26) 1.66 (0.26)
Digit Span
 Forward 9.90 (1.78) 11.66 (2.11) 10.61 (2.00) 11.39 (2.68) 10.39 (2.18) 10.25 (2.12)
 Backward 9.41 (2.21) 11.41 (2.23) 9.32 (2.85) 10.74 (2.50) 8.93 (2.05) 8.89 (2.20)
CANTAB pattern 85.1 (21.2) 87.1 (10.2) 86.8 (11.4) 88.4 (10.5) 86.7 (10.1) 91.5 (9.2)
ASRS—total 47.5 (9.8) 45.5 (10.4) 48.5 (8.4) 45.2 (8.8) 49.0 (8.2) 47.0 (8.6)
CDA-FE 0.30 (1.36) 0.80 (1.61) 0.37 (1.12) 0.32 (2.40) 0.13 (1.40) 0.91 (2.75)
CDA-Δ −0.13 (.57) 0.07 (.75) −0.24 (0.64) −0.20 (0.63) −0.06 (0.62) 0.01 (0.55)

Note. CANTAB = Cambridge Neuropsychological Testing Automated Battery; ASRS = Adult ADHD Self-Report Scale; CDA = contralateral delay 
activity; FE = Filtering Efficiency.
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theorize those neural working memory networks to have a 
“general purpose” function and predict that an improve-
ment in one aspect of working memory (e.g., criterion mea-
sures) could strengthen, or at least change, this network for 
other aspects working memory is involved. Our study sup-
ports, on the basis of neural activity as measured by EEG, a 
perspective that promotes a more context-dependent mobi-
lization of neural activity. At a practical level, our study 
reaffirms the need for a highly critical attitude toward 
claims from the cognitive training industry that specific 
executive functions can be trained from computer screens 
and transferred to benefit operations in everyday life. From 
a clinical perspective, it appears clear that CWMT is not an 
effective treatment for college students with ADHD as 
improvements solely on tasks close to those trained are not 
meaningful. Future studies, however, could examine sex 
differences, as well as the combined effects of medication 
plus CWMT, because our study was likely underpowered to 
detect such effects.

Figure 3. CDA waveforms in microvolts before (pre) and after (post) treatment broken down per load condition (low load, high 
load, and distractor load) and per treatment group (standard length, shortened length, and waitlist).
Note. CDA = contralateral delay activity.

Figure 4. Delta-CDA values at pre- and post-treatment 
time points for each of the treatment group (standard length, 
shortened length, and waitlist).
Note. CDA = contralateral delay activity.
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This study is, to the best of our knowledge, one of the 
few RCTs directly testing claims that CWMT is changing 
one’s brain in meaningful ways. We conclude that CWMT 
has not been shown to affect behavioral EEG brain indices 
of working memory and that CWMT is not an effective 
treatment for college students with ADHD by testing for 
treatment effects at various levels of transfer. These find-
ings, using what is currently considered one of the most 
robust EEG paradigms to measure working memory capac-
ity, contribute to the broader literature on neural plasticity 
with executive function training and suggest the need for 
alternative treatment programs.
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